确保电网规范合规性的数字化路径,助力公用事业企业在变幻莫测的,可再生能源时代守护电网安全
自一个世纪前开始大规模供电以来,从化石燃料向可再生能源的转变构成了电网最深刻的变革。风能、太阳能和水力等分布式和间歇性能源与电动汽车(EV)、储能系统和低净值独立能源建筑等新技术一起,正在占据能源板块中越来越多的份额。所有这些正在对电网的稳定性和可靠性造成冲击。作为应对,输电系统运营商(TSO)正在强化电网标准,明确所有参与者在发电资产并网时必须遵循的规则和义务。公用事业企业、集成商和发电企业必须提供基于“数字孪生”的详细、高保真的电力系统模拟报告,和通过现场测量或组件认证验证的控制系统数字仿真模型。这导致了发电厂主要部件和控制系统在调试和运行期间需要进行测试的次数越来越多。在本白皮书中,ABB大致介绍了电网运营商如何与有实力的技术供应商合作来应对这种新趋势,确保遵守日新月异的电网标准,管控电网行为变幻莫测的复杂性,并抢占先机部署新一代数字化智能电网解决方案来获得空前的连接性和可靠性。
考虑用户充电决策行为的电动汽车充电引导策略
快充站(fast charging station,FCS)是电动汽车(electric vehicle,EV)的重要能源供给设施。随着EV的推广应用,快充负荷也逐渐攀升,对配电网运行产生了一定影响。然而,快充负荷作为一种需求侧响应资源,可通过有序充电控制缓解EV接入给配电网运行带来的负面影响,因此文中提出考虑用户充电决策行为的EV充电引导策略。首先,考虑动态交通路况影响,利用出行链理论构建EV移动模型,进行用户出行模拟,并刻画剩余电量的时空分布。其次,考虑剩余电量、充电设施分布与充电服务价格,利用后悔理论构建用户充电决策模型,并刻画充电负荷时空分布。然后,以配电网网损最小为目标,构建充电服务价格优化模型,通过优化公共FCS的充电服务价格,引导充电负荷时空分布。最后,对不同服务价格方案进行对比,结果表明,文中方法对小容量车型的引导效果更好,且用户时间消耗等效折算系数越大,文中方法对充电负荷引导的效果越好。
基于双向出行链的电动汽车平抑电网波动策略
针对电动汽车(electric vehicle,EV)时空转移随机性造成的电网波动问题,计及车主的性别差异、车主实时出行目的地不同和车辆双向行驶,提出了一种基于出行随机性双向出行链的EV充放电调度策略。考虑车主实际出行过程,建立EV双向出行链模型;考虑到男女车主出行过程中的性别差异,确定男女实时出行概率模型;以降低电网的波动为目标函数,考虑车主实时出行需求和EV实时荷电状态(state of change,SOC)建立调度模型,并依据所建立模型对EV进行充放电调度。在约280 m2的区域进行仿真分析,结果表明:双向出行链模型更接近用户实际出行规律,其调度策略能够在满足用户实际出行需求的同时,更好地抑制电网波动性。
电动汽车大功率智能快速充电系统的研发及大功率柔性分配充电堆产业化
当前,珍惜地球上有限的石油资源,保护人类赖以生存的自然环境,减小温室气体排放量,遏制全球气候变暖已经成为各国面临的共同课题。汽车作为现代社会化大工业的产物,已经成为石油消耗的主体。缓解资源与环境两大问题,汽车工业必需向着环保、清洁、节能方向发展。以电动汽车为代表的新能源汽车具有零(低)污染物排放、低噪声、能源效率高、维修及运行成本低等特点,代表了世界汽车发展的未来方向。 电动汽车的研究与开发,都面临着-一个共同的难题:电动汽车的续航里程不够长。无论是插电式混合动力车(PHEV)还是纯电动汽车(EV),都严重依赖充电网络。目前,国家电网、南方电网在充电基础设施方面已加快脚步,在广州、上海、深圳等地均有大型电动汽车充电站建成投入使用。电动汽车与充电设施相互依存、相互促进,共同构成--个新兴产业链。地面大功率快速充电设备作为非车载充电装置,是整个充电站系统中为电动汽车实施安全快速可靠充电的关键核心设备,在充电站的建站成本中所占比例也较高。因此,研发出大功率智能快速充电系统代替传统的相控整流电源,并以此为平台对电池的充电过程进行智能监控,实现能量的合理配置,并达到节能增效的目的就具有十分重要的意义和迫切性。