碳市场下计及电−氢储能的综合能源系统需求响应策略
随着能源耦合的发展及我国碳市场的不断完善,传统电力需求响应已不满足双碳背景下多能耦合的综合能源系统(integrated energy system, IES)发展现状。为提高IES的综合需求响应(integrated demand response, IDR)能力,建立了考虑碳市场与电−氢储能的园区−用户双层模型。其中上层模型为考虑电−氢储能投资成本、碳市场履约成本及电/气/热多能耦合的IES模型;下层为包含可转移、可削减电热负荷的用户模型。然后引入运营商作为园区管理者,以运营商净收益最大、用户成本最小为目标函数,构建了运营商−用户主从博弈框架。最后算例仿真分析了碳市场环境下园区的需求响应效果,以及园区碳排放强度对IES系统碳排放的影响,并配置了不同情况下园区的电−氢储能,结果验证了所建双层模型及其互动方法的有效性。
基于系统动力学的氢需求量中长期预测
“双碳”背景下氢能将在各种领域发挥巨大作用,开展氢需求中长期预测具有重要意义。基于系统动力学方法建立了省级氢需求中长期预测模型。首先将氢能需求分为工业、供热和交通3大领域,考虑各子系统内部因素的相互作用以及经济发展、政策支持等外部因素的影响,分析因果关系,构建系统预测方程;其次设定系统参数,采用最小二乘法方程回归得到方程常数,基于该省发展规划利用灰色模型设定表函数参数,并将模拟结果与历史数据进行对比,结果表明模型误差较小,适用于该省氢需求预测;最后利用所建立的系统动力学模型对该省的氢需求量进行了预测。
电-热-氢综合能源系统鲁棒区间优化调度
储能技术与风电相结合实现电能的时空平移是解决系统运行稳定性问题的有效手段。氢储能具有储存容量大、可实现电热联产联供的优点,具有很大的发展潜能。然而由于风电存在不确定性,氢储能系统在频繁切换工作模式时面临着不确定的热能需求。因此,文中综合考虑氢储能在间歇模式下的热能需求,首先,介绍了氢储能系统接入的电-热综合能源系统基本结构,将风电场与氢储能相结合构成风-氢混合系统;然后,提出考虑风-氢混合系统热平衡需求不确定性的电-热综合能源系统鲁棒区间优化调度模型;最后,基于对偶理论,对所提出的模型转化求解,通过算例对比分析各类情况优化结果,验证了氢储能在促进风电消纳、提高系统能源综合利用率方面的有效性,并证明了考虑电解槽和燃料电池工作温度能提高系统的工作效率并提高风电场并网功率。
基于按需比例分配机制的风光火氢多时间尺度协同规划
随着高比例新能源新型电力系统的灵活性需求增加,制定灵活性资源市场运营机制实时平衡大规模新能源出力波动性和不确定性十分重要。为此,文中提出一种基于按需比例分配机制的风光火氢协同规划方法。首先,制定风/光场站和氢储能系统的三阶段协调运行策略,根据按需比例分配机制进行风/光场站间功率交易,协调风电场和光伏电站的收益和支出,由火电和氢储能系统提供运行灵活性,采用固定利润比例模型保证氢储能系统的收益稳定性;然后,综合考虑投资决策和运行模拟,将功率交易成本和灵活性资源调节成本纳入优化目标,建立以风光为主体电源,以火电和氢储能为辅助电源的多时间尺度协调规划模型;最后,以中国东北某省级电网为算例进行分析。结果表明,采用文中所提方法进行电源规划可以兼顾经济性和环保性,降低灵活性资源需求和投资成本,提高风/光场站的功率利用率。
考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略
电-氢能源系统(IEHS)的合理规划对能源结构转型具有重要意义,充分利用氢储能的可移动特性可降低IEHS综合成本,提出一种考虑氢能储运特性的配电网集群划分与氢能系统规划策略。首先,将氢能系统拆分为多个氢能子系统(HES),建立多个HES之间的气氢拖车交通运输及储运成本模型;其次,基于电力-交通网架结构与新能源分布情况提出配电网集群划分方法;最后,根据集群划分结果,建立HES双层选址定容模型,该模型以IEHS年综合成本最低为目标,分层解决单个集群内HES的容量配置问题、各集群内部HES选址定容及气氢拖车配置问题。结果表明:提出的策略可以减小氢能储运压力、降低IEHS综合成本,提升风、光消纳水平,加快系统潮流计算迭代收敛速度。
考虑荷电与储氢状态的风光氢储系统动态控制仿真模型
储能是平抑可再生能源波动的重要手段之一。考虑内部气体跨膜传输现象,基于质子交换膜电解槽的组件结构以及电化学和热平衡原理,构建了可描述质子交换膜电解槽物质传输以及能量转换的精细化仿真模型。在此基础上,建立了包含电化学储能、氢储能的电-氢耦合系统模型。提出了一种考虑电化学储能荷电状态与氢储能氢状态的双层协调控制策略。上层功率分配考虑了系统内电负荷和氢负荷需求变化,将电化学储能荷电状态、储氢罐氢状态作为重要约束因素,确定系统各设备的工作模式。底层控制根据设备的工作特性,采用PQ控制、VQ控制等方法实现功率追踪调整。通过多种不同运行场景的算例仿真验证了所提模型与控制方法的有效性。研究成果可为风光氢储系统控制策略优化提供支撑。
双向可逆的集中式电氢耦合系统容量优化配置
针对风光富集地区大型新能源发电厂的弃风弃光问题,利用可逆固体氧化物燃料电池(reversible solid oxide fuel cell,RSOC)结合氢储能的双向转换特性消纳多余风光资源,提出一种双向可逆的集中式RSOC电氢耦合系统容量优化配置方法。首先构建集中式RSOC电氢耦合系统架构,建立发电系统、电氢转换系统等模型;其次考虑燃料电池特性建立RSOC性能衰减模型,考虑特高压通道可用传输能力不确定性生成典型场景;进而建立集中式RSOC双层容量规划模型,上层以运营期收益最大为目标优化RSOC、储氢库容量配置,下层以综合成本最低为目标优化各设备出力,联合粒子群算法与Cplex求解器进行求解。最后通过算例分析,验证RSOC的加入提高了系统经济性及环境效益,同时投资灵敏度分析表明电池单位容量成本是制约系统经济运行的重要因素。
配电网与分布式电氢耦合系统的交互策略研究
针对新能源大规模接入给配电网安全运行带来的影响,开展了含混合储能的分布式电氢耦合系统与配电网间的多时间尺度交互策略研究。首先,提出分布式电氢耦合系统与配电网之间的平衡服务机制、需求响应机制等多元交互机制;其次,基于博弈理论,制定了电氢耦合系统与配电网之间的中长期与短期交互策略;最后,以某一典型区域的配电网与分布式电氢耦合系统为例进行仿真分析。算例结果表明:氢储能因其跨周期特性在中长期交互中具有优势;电化学储能响应迅速更适合短期交互;相较于单一形式储能系统,电氢混合储能系统能够有效降低峰谷差,提高系统收益,更契合现有配电网体系。 In response to the impact of the widespread integration of new energy sources on the secure operation of distribution networks, a study is undertaken to explore a multi-time scale interactive strategy for distributed electrohydrogen coupled systems, incorporating hybrid energy storage and distribution networks. Firstly, interactive mechanisms including the balancing service mechanism and demand response mechanism between distributed electro-hydrogen coupled systems and distribution networks are proposed. Secondly, based on game theory, medium-to-long-term and short-term interactive strategies are formulated for electro-hydrogen coupled systems and distribution networks. Finally, a simulation analysis is executed utilizing the distribution networks and distributed electro-hydrogen coupled system in a representative region as an illustrative example. The outcomes of the case study underscore that hydrogen storage exhibits an advantage in medium-to-long-term interactions due to its crossperiod characteristics. Electrochemical storage, distinguished by its rapid response, proves more suitable for shortterm interactions. In comparison to singular energy storage systems, a hybrid electro-hydrogen storage system can effe