基于客户导向的SDJN-DU-Ⅱ型智能配变终端的研发及工程应用
传统配网中台架式配变台区的标准配置是由变压器、配电箱、计量箱等诸多设备组成,配电箱中安装变压器监测终端以实现对变压器的在线监测及无功补偿的控制,计量箱中安装用电信息采集终端以实现对计量电表远程数据的采集。这种多种信息的多路采集、分散控制的缺点是显而易见的,突出表现在台架设备众多、占地面积大、现场施工复杂、智能监测设备重复投资、运行维护成本高等问题。 同时,配变台区无功补偿作为配网节能降损的主要技术措施,随着近年来国网公司配网节能改造项目的大力实施,配网台架就地安装了大量无功补偿装置。这些设备位置分散,造成配网无功补偿维护和管理困难,设备健康状态无法及时准确掌握,设备的无功投入及带来的节电效果不能进行量化评估。相对配网节能降损和生产运营不断增大的压力,配网无功监控管理相对带后,管理手段仍然粗放。 因此追切需要研发集多种数据采集应用功能于一体的新型智能配变终端,依托其搭建无功节能及运维支撑平台,变被动响应为主动运维,提升配网设备运维管理水平,提高无功补偿设备利用效率,有效降低配电网的损耗,解决配电网无功管理基础薄羽问题,推动节能降耗工作在配电网领域的深入开展。
智能蓄电池新技术在电网中的应用介绍
传统的蓄电池与蓄电池监测装置都是相互独立,蓄电池监测设备大多数安装繁冗,接线过多,需离线处理,在蓄电池智能管理、故障研判方面有所欠缺,在电池远程自动放电、修复方面缺乏有效技术手段等一些技术瓶颈,已经不适应当前在电力、通信、新能源、储能等领域大规模应用蓄电池的检测管理要求。基于蓄电池与监测一体的智慧电池技术,PLC通讯技术、物联网技术、以及大数据云平台技术,建立一套智能的专家型的电池诊断策略系统,兼顾安全性监测以及全周期寿命管理,彻底改变传统蓄电池监测结构,无需布线安装,对电网蓄电池监测管理系统的智能化、信息化建设和发展有现实意义。
基于大数据的站用交直流电源智能化管理应用
站用电源系统承担着为整个变电站站用设备供电的重要任务,其重要性不言而喻。目前的变电站站用电源各个部分都有故障在线监测设备,对设备运行情况进行实时监测,对于已发生的故障进行实时告警。但是各个监测之间故障判断逻辑孤立,不能进行综合分析。设备运行的历史数据没有进行有效的管理,无法对设备的运行情况做出提前预判,无法对设备的供应商进行有效评估。所以建立一个站用电源的大数据采集分析平台,将站用电源的监测数据全部采集到平台下,以实现设备运行情况的实时监控,对站用电源的数据进行长期的保存和分析,根据统计给出运行维护的建议。对大数据的关联和深度的再学习能实现对于故障的提前预警,及早关注使得处理能在故障真正的发生之前,提升运行维护水平。另外在该平台下还可以结合智能化的设备实现运行维护的远程操作,可以大大提高运行维护的效率。
基于功率跟踪的架空地线取能装置
贵州电网2008年冰灾后在全省陆续安装数百套输电线路覆冰监测装置,目前覆冰监测装置都采用太阳能板结合蓄电池的供电模式,通过十余年运行经验发现该供电模式存在较大的问题,特别是在冬季覆冰期监测设备经常出现因供电不足而失效,并且需要人工到现场维护才能恢复的情况。造成该间题的原因主要有两点:太阳能板被冰雪覆盖造成能量输入严重不足。在冰冻气候条件下太阳能板会被覆盖较厚的冰层,使其长时间无法为监测系统提供充足的能量。由于长期输入能量不足造成电源管理系统失效、影响使用寿命。监测设备的电源管理系统由内部储能蓄电池供电。作为后备电源的蓄电池在长期得不到外部能量补充时会造成蓄电池能量过放,当其输出电压低于充电控制器的启动电压后整个电源系统就会出现崩溃。即使之后太阳能板恢复正常功率输出电源系统也不能恢复正常。 事实上,目前输电类在线监测设备电源受行业水平限制,大部分采用与覆冰装置相同的供电方案,由于覆冰或长期积污会导致太阳能发电效率较低,以上问题也是输电类在线监测设备遇到的共性问题。 针对以上间题,急需为覆冰监测装置找到一种成本相对低廉、不受外界气候环境影响、具有持续供电能力的取电装置。
变电站电磁环境净空间发生器的研制
变电站的一次设备及其他辅助设备应确保安全可靠工作,然而变电站电磁环境复杂多变,常常会对变电设备的试验、运行带来不良影响。电气试验工作和设备在线监测是评估变电设备状态的重要手段,然而部分试验和监测设备容易受到现场电磁环境影响,如GIS局放和特高频检测、开关柜局放检测、电压互感器在线监测,电流互感器在线监测、避雷器在线监测等,影响较大时甚至会淹没待检测信号,导致试验或监测数据不准确,设备状态判断错误,影响到设备及电网的安全稳定运行。在此背景下,亟需研制一种电磁环境净空间发生器,为现场试验及检测构建一个独立的具备抗似稳电场、抗电快速瞬变脉冲群骚扰的空间,实现对变电站中进行电气试验及在线检测进行电磁隔离和电磁防护,有效抑制干扰,保证装置或系统的可靠工作,提升现场试验数据的准确性,对提高工作效率、保障电网安全稳定运行具有重要意义。
基于稀疏信息差值的集电线路故障精准定位方法
针对集电线路多分支网络结构故障定位过程时精度易受测点数量和行波波速影响的问题,提出一种基于稀疏信息差值的集电线路故障定位方法。按照集电线路划分故障区域。首先,通过变分模态分解从初始行波信号中提取第一本征模函数信号,并通过Stockwell变换将其进一步分解为S矩阵。然后,通过S矩阵计算其模矩阵Q,并计算所有模矩阵之间的能量相似性,建立区域决策矩阵来识别故障区域。最后,在确定的故障区域内设置虚拟故障点,根据故障区域首末端初始行波到达时间,计算测量行波和虚拟故障点之间的信息差异度,采用离散-连续粒子群实时修正故障分支和故障位置。仿真结果表明,该方法无需集电线路所有分支行波信息,大幅降低监测设备数量,消除波速影响,实现多分支集电线路的精准故障定位。
大容量能馈式电子负载装置的研制
电气设备能效评测的关键在于监测设备在各种负荷或运行工况下的耗能效果。而通常的电气设备试验中,负载往往采用RLC阻抗负载箱进行能耗放电的方式进行。这种方法不仅测试精度低、且造成了电能的巨大浪费,并存在如下缺点:负载采用有级调节,当需要阻抗值连续变化或负载形式灵活变化时,难以满足电气设备对不同工况连续调节的要求;功率较小,在长时间大电流试验环境下容易造成器件的老化和烧损;热稳定性差,当环境温度改变时,负载大小也会变化;负载形式单一,不能满足电气设备试验中对负荷容量、功率因数、三相不平衡度、及谐波等动态连续调节的要求;试验电能消耗在电阻上,造成巨大的能源浪费。